Factored Language Models and Generalized Parallel Backoff

نویسندگان

  • Jeff A. Bilmes
  • Katrin Kirchhoff
چکیده

We introduce factored language models (FLMs) and generalized parallel backoff (GPB). An FLM represents words as bundles of features (e.g., morphological classes, stems, data-driven clusters, etc.), and induces a probability model covering sequences of bundles rather than just words. GPB extends standard backoff to general conditional probability tables where variables might be heterogeneous types, where no obvious natural (temporal) backoff order exists, and where multiple dynamic backoff strategies are allowed. These methodologies were implemented during the JHU 2002 workshop as extensions to the SRI language modeling toolkit. This paper provides initial perplexity results on both CallHome Arabic and on Penn Treebank Wall Street Journal articles. Significantly, FLMs with GPB can produce bigrams with significantly lower perplexity, sometimes lower than highly-optimized baseline trigrams. In a multi-pass speech recognition context, where bigrams are used to create first-pass bigram lattices or N-best lists, these results are highly relevant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factored Neural Language Models

Language models based on a continuous word representation and neural network probability estimation have recently emerged as an alternative to the established backoff language models. At the same time, factored language models have been developed that use additional word information (such as parts-of-speech, morphological classes, and syntactic features) in conjunction with refined back-off str...

متن کامل

Morpheme-Based Language Modeling for Amharic Speech Recognition

This paper presents the application of morpheme-based and factored language models in an Amharic speech recognition task. Since using morphemes in both acoustic and language models results, mostly, in performance degradation due to acoustic confusability and since it is problematic to use factored language models in standard word decoders, we applied the models in a lattice rescoring framework....

متن کامل

Factored Language Models Tutorial

The Factored Language Model (FLM) is a flexible framework for incorporating various information sources, such as morphology and part-of-speech, into language modeling. FLMs have so far been successfully applied to tasks such as speech recognition and machine translation; it has the potential to be used in a wide variety of problems in estimating probability tables from sparse data. This tutoria...

متن کامل

Combination of Recurrent Neural Networks and Factored Language Models for Code-Switching Language Modeling

In this paper, we investigate the application of recurrent neural network language models (RNNLM) and factored language models (FLM) to the task of language modeling for Code-Switching speech. We present a way to integrate partof-speech tags (POS) and language information (LID) into these models which leads to significant improvements in terms of perplexity. Furthermore, a comparison between RN...

متن کامل

Interpolated Backoff for Factored Translation Models

We propose interpolated backoff methods to strike the balance between traditional surface form translation models and factored models that decompose translation into lemma and morphological feature mapping steps. We show that this approach improves translation quality by 0.5 BLEU (German–English) over phrase-based models, due to the better translation of rare nouns and adjectives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003